

Reaction networks with delays applied to toxicity analysis Joint work with Hanna Klaudel and Franck Delaplace

Cinzia Di Giusto Université d'Evry-Val d'Essonne, IBISC

BioPPN 2014

Toxicity analysis

Conclusions

Esynbiotic The SYNBIOTIC project

- Main goal: design of artificial bio-systems
- How: development of computer-aided tools
- What: specification and analysis of cellular regulation networks (i.e., genetic and signalization networks and metabolic pathways)

ANDy

Toxicity analysis

Conclusions

Requirements

We want to build a model where:

- different regulatory networks can be expressed
- safety properties can be guaranteed

Safety

- in general \Rightarrow nothing bad can happen
- in a bio-framework \Rightarrow the system do not exhibit toxic behaviors

Toxicology

- The toxicity process is a sequence of physiological events that causes the abnormal behavior of a living organism with respect to its healthy state.
- Healthy physiological states generally correspond to homeostasis.
- Toxicity highly depends on the exposure time and the thresholds dosage delimiting the ranges of safe and hazardous effects.

Definition (Toxicity)

Toxicity is the deregulation of the homeostasis processes

ANDy

Toxicity analysis

Conclusions

SUGAR

Blood glucose regulation

- Glucose regulation is a homeostatic process.
- Glycemia is regulated by insulin and glucagon.
- Assimilation of sugars vs aspartame.

ANDy

Toxicity analysis

Conclusions

SUGAR

Blood glucose regulation

- Glucose regulation is a homeostatic process.
- Glycemia is regulated by insulin and glucagon.
- Assimilation of sugars vs aspartame.

Toxic!

Assimilation of food (even if it contains aspartame) should calm hunger and induce satiety, not the opposite!

- An explicit notion of discrete time
- Species with expression levels and decay
- Reactions with duration

- An explicit notion of discrete time
- Species with expression levels and decay
- Reactions with duration

ANDy

An ANDy network is a set of species ${\mathcal S}$ governed by a set of reactions ${\mathcal R}$

- Species have a finite number \mathcal{L}_s of expression levels.
- Each species \boldsymbol{s} is initialized at level $\eta_{\boldsymbol{s}}$ and it decays gradually as time passes by.
- Duration of decay vary among levels:

$$\delta_{\boldsymbol{s}}: [\mathbf{0}..\mathcal{L}_{\boldsymbol{s}} - \mathbf{1}] \to \mathbb{N}^+ \cup \{\omega\}.$$

 $\delta_{s}(\mathbf{0}) = \omega.$

Conclusions

Reactions

• Reactions govern evolution of species

$$\rho ::= \mathbf{A}_{\rho} ; \mathbf{I}_{\rho} \xrightarrow{\Delta} \mathbf{R}_{\rho}$$

- A_{ρ} , I_{ρ} are sets of pairs (s, η_s)
- $\pmb{R}_{
 ho}$ is a set of pairs $(\pmb{s},\pm\pmb{n})$
- Each reaction has a response time

$$\Delta:\mathcal{R}
ightarrow\mathbb{N}^+$$

Time required for yielding increase (+) and/or decrease (-) of levels of results.

ANDy 9/2

A reaction of response time Δ can take place if

- each activator/reactant stays at least at a given level
- each involved inhibitor is at most at a given level

during the whole reaction time.

• Outcome: the level of results of the reaction can be increased or decreased.

Toxicity analysis

Conclusions

The dynamics of ANDy is formalized using high-level Petri nets.

- Time is explicitly represented.
- Places: Species + 1 place for time
- Transition: Reaction + 1 transition for time

- We assume a unique discrete global clock that starts at zero and always shows the current date (timestamp).
- Each species is represented by a place
- The state of a species $m{s}$ is a tuple $\langle I_{m{s}}, u_{m{s}}, \lambda_{m{s}}
 angle$
 - *ls* stores the current level;
 - *U_s* is a timestamp recording the last date when the level has been updated;
 - λ_s is a tuple of timestamps with \mathcal{L}_s fields;

Toxicity analysis

Conclusions

ANDy networks can evolve in two ways:

- () as effect of an enabled reaction ρ
- as an effect of the clock:

Toxicity analysis

Conclusions

Transition: reaction

Transition guard:

Result: a result r at level l_r and the clock at time t

$$\begin{array}{l} (r,+1) \\ \langle l_r, u_r, \lambda_r \rangle \to \langle l_r + 1, t, \lambda_r \{t/l_r + 1\} \\ (r,-1) \\ \langle l_r, u_r, \lambda_r \rangle \to \langle l_r - 1, t, \lambda_r \{t/l_r\} \rangle \end{array}$$

2 as an effect of the clock:

- The timestamp t stored in the clock is incremented by one (t + 1).
- A species may stay at level *I* for $\delta(I)$ time units. Decay happens as soon as the interval $\delta(I)$ is elapsed ,

$$\langle I, u, \lambda \rangle \rightarrow \langle I - 1, t + 1, \lambda \{ t + 1/I \} \rangle$$

ANDy

Toxicity analysis

Conclusions

Glucose regulation – 1

The set of species involved:

Sugar Aspartame Glycemia

Glucagon Insulin
$$\begin{split} \mathcal{L}_{sugar} &= \{0,1\} \\ \mathcal{L}_{aspartame} &= \{0,1\} \\ \mathcal{L}_{glycemia} &= \{0,1,2,3\} \end{split}$$

 $\mathcal{L}_{glucagon} = \{0, 1\}$

 $\mathcal{L}_{insulin} = \{0, 1, 2\}$

 $\delta_{sugar}(1) = 2$ $\delta_{aspartame}(1) = 2$ $\delta_{glycemia}(1) = 8$ $\delta_{glycemia}(2) = 8$ $\delta_{glycemia}(3) = 8$ $\delta_{glucagon}(1) = 3$ $\delta_{insulin}(1) = 3$ $\delta_{insulin}(2) = 3$

Toxicity analysis

Conclusions

Glucose regulation – 2

ANDy 17 / 22

Conclusions

Glucose regulation – 3

The set of reactions:

ρ_{k}	Activators A _k	Inhibitors I _k	Results R _k	Δ_k
ρ_1	{(<i>Sugar</i> , 1)}	Ø	$\{(Insulin, +),$	
			(<i>Glycemia</i> ,+)}	1
ρ_2	{(Aspartame, 1)}	Ø	$\{(Insulin, +)\}$	1
$ ho_3$	Ø	{(<i>Glycemia</i> , 1)}	$\{(Glucagon, +)\}$	1
$ ho_4$	{(<i>Glycemia</i> , 3)}	Ø	$\{(Insulin, +)\}$	1
ρ_5	{(<i>Insulin</i> , 2)}	Ø	$\{(Glycemia, -)\}$	2
$ ho_{6}$	{(<i>Insulin</i> , 1),			
	(Glycemia, 3)}	Ø	$\{(Glycemia, -)\}$	2
ρ_7	{(<i>Insulin</i> , 1)}	{(Glycemia, 2)}	$\{(Glycemia, -)\}$	2
$ ho_{8}$	$\{(Glucagon, 1)\}$	Ø	$\{(Glycemia, +)\}$	2

- Decay and reactions are different types of behaviors
- Decay is synchronous it corresponds to an abstraction of the action of the environment
- Reactions are asynchronous their duration corresponds to the time required to observe an effect
- Execution time vs Simulation time More reactions are enabled less probable is the execution of time

ANDy

- ANDy can be used to detect and predict toxic behaviors related to the dynamics of bio-molecular networks.
- We resort to temporal logics and model checking techniques.
- We use computation tree logic (CTL)
- We provide an abstraction of ANDy into Kripke structures

ANDy

(Toxicity analysis

Examples of questions

We are interested in checking whether the inner equilibrium of an organism is maintained when administrating drugs or applying stressors.

Toxicology properties can be classified into:

- properties checking for the appearance of symptoms,
- **2** properties characterizing **causal relations** between events.

ANDy

Toxicity analysis

Conclusions

Causality:

Does assimilation of sweeteners cause hypoglycemia?

 $\begin{array}{l} \textbf{EF}[((\textit{Sugar},1) \lor (\textit{Aspartame},1)) \land (\textit{Glycemia},1)] \rightarrow \\ \textbf{AF}(\textit{Glycemia},2) \end{array}$

ANDy

(Toxicity analysis

Conclusions

Paths for glucose regulation

 $\begin{array}{l} \textbf{EF}[((\textit{Sugar},1) \lor (\textit{Aspartame},1)) \land (\textit{Glycemia},1)] \rightarrow \\ \textbf{AF}(\textit{Glycemia},2) \end{array}$

Path that satisfies

 $(Sugar, 1), (Aspartame, 0), (Glycemia, 1), (Insulin, 0), (Glucagon, 0) \xrightarrow{\rho_1} (Sugar, 1), (Aspartame, 0), (Glycemia, 2), (Insulin, 1), (Glucagon, 0)$

Path that contradicts

 $(Sugar, 0), (Aspartame, 1), (Glycemia, 1), (Insulin, 0), (Glucagon, 0) \xrightarrow{\rho_2} (Sugar, 0), (Aspartame, 1), (Glycemia, 1), (Insulin, 1), (Glucagon, 0) \xrightarrow{\rho_7} (Sugar, 0), (Aspartame, 0), (Glycemia, 0), (Insulin, 1), (Glucagon, 0)$

ANDy

(Toxicity analysis

Conclusions

Sound and completeness

Theorem

Given an ANDy network (S, \mathcal{R}) , its encoding into

- Kripke structures
- Timed Automata

is sound and complete.

ANDy 24 / 2

ANDy

Toxicity analysis

- ANDy, a high-level Petri net framework for cellular regulation networks.
- Species that can degrade as time passes by governed by a set of reactions.
- Toxicity properties can be expressed via a temporal logic.
- Properties can be verified thanks to a sound and complete abstraction.

ANDy

Toxicity analysis

- Comparison with stochastic models à la Gillespie
- Refinement of the abstraction
- Implementation: Snakes, Snoopy + Marcie

Reaction networks with delays applied to toxicity analysis Joint work with Hanna Klaudel and Franck Delaplace

Cinzia Di Giusto Université d'Evry-Val d'Essonne, IBISC

BioPPN 2014

